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In predictive coding, experience generates predictions that atten-
uate the feeding forward of predicted stimuli while passing
forward unpredicted “errors.” Different models have suggested
distinct cortical layers, and rhythms implement predictive coding.
We recorded spikes and local field potentials from laminar elec-
trodes in five cortical areas (visual area 4 [V4], lateral intraparietal
[LIP], posterior parietal area 7A, frontal eye field [FEF], and pre-
frontal cortex [PFC]) while monkeys performed a task that modu-
lated visual stimulus predictability. During predictable blocks,
there was enhanced alpha (8 to 14 Hz) or beta (15 to 30 Hz) power
in all areas during stimulus processing and prestimulus beta (15 to
30 Hz) functional connectivity in deep layers of PFC to the other
areas. Unpredictable stimuli were associated with increases in
spiking and in gamma-band (40 to 90 Hz) power/connectivity that
fed forward up the cortical hierarchy via superficial-layer cortex.
Power and spiking modulation by predictability was stimulus spe-
cific. Alpha/beta power in LIP, FEF, and PFC inhibited spiking in deep
layers of V4. Area 7A uniquely showed increases in high-beta (∼22
to 28 Hz) power/connectivity to unpredictable stimuli. These results
motivate a conceptual model, predictive routing. It suggests that
predictive coding may be implemented via lower-frequency alpha/
beta rhythms that “prepare” pathways processing-predicted inputs
by inhibiting feedforward gamma rhythms and associated spiking.

predictive coding | cortical layers | gamma oscillations | beta oscillations |
neural synchronization

The brain exploits predictability. It makes cortical processing
more efficient. Visuomotor integration, visual/auditory

speech perception, and visual perception all benefit when sen-
sory inputs are predictable (1–3). The brain has an arsenal of
mechanisms to tamp down and improve processing of familiar,
repeated, or predictable inputs. One example is stimulus-specific
adaptation. All over cortex, there is less spiking and smaller
blood-oxygen-level-dependent (BOLD) responses when a stim-
ulus is repeated (4–9). Responsiveness is recovered if the stim-
ulus is changed or a pattern is violated (i.e., to “oddballs”) (10,
11). This can lead to fewer activated neurons but finer-tuned,
more robust representations (8).
But the brain does more than adapt to repeated inputs. A wide

variety of evidence indicates that it makes mental models of the
world that actively generate predictions, a process known as pre-
dictive coding (12–14). Moment-to-moment predictions are used
to inhibit processing of expected inputs which, because they were
expected, are not informative. Unexpected sensory inputs that
deviate from a prediction, are “prediction errors” (PEs). They are
informative and thus not inhibited, fed forward, processed, affect
behavior, and are used to update the prediction models.
Much of the work on the neural mechanisms of prediction and

its violation has focused on spiking activity (2, 15–17). But there
is mounting evidence that oscillatory dynamics play a role in
regulating cortical processing and thus can also play a role, es-
pecially the gamma (40 to 90 Hz) and alpha/beta (10 to 30 Hz)
bands (1, 18–25). A key observation is that, all across cortex,
gamma power (>35 Hz)/spiking is higher during bottom-up
sensory inputs. They are anticorrelated with alpha/beta (8 to
30 Hz) power (26–29), which is higher under conditions of top-
down control (e.g., attention and response inhibition) (30–34).

This suggests that top-down alpha/beta help regulate the pro-
cessing of bottom-up inputs served by gamma and spiking. The
idea is that alpha/beta carries the top-down predictions that in-
hibit the gamma/spiking that process expected inputs. This is
consistent with gamma power being higher in the superficial,
feedforward, cortical layers, and alpha/beta power being higher
in the deep, feedback, cortical layers (26, 35–40). Indeed, su-
perficial cortical layers have been hypothesized to be specialized
for computing PEs and feeding PEs forward at gamma frequency
(1, 19). In addition, computational modeling studies have shown
the plausibility of superficial gamma circuits to engage in pre-
diction error computations (38, 41, 42). Direct evidence for al-
pha/beta and gamma in predictive coding per se comes from
observations of increased gamma power to stimuli that are pre-
diction errors (22, 24, 25).
How these rhythms (and their relation to spiking) differ with

stimulus repetition/predictability as well as their stimulus speci-
ficity is not well known. Most neurophysiological studies of the
effects of stimulus predictability have focused on spiking activity,
often in a single area. And none of them to date have examined
and compared activity in different cortical layers. We recorded
local field potentials (LFPs) and spiking using multiarea, multi-
laminar recordings from a visual area (V4) and higher-order
cortical areas (posterior parietal cortex and prefrontal cortex
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[PFC]) simultaneously. Area V4 was selected as previous studies
have shown this area to be a target of top-down signals such as
attention (43, 44). Frontoparietal cortex was targeted because of
its well-established role in top-down attention and working
memory, cognitive processes that are engaged in the task
employed here (30, 31). We manipulated the predictability of
objects used in a working memory task. This revealed layer and
frequency-specific associations with stimulus repetition/predict-
ability as well as evidence for the direction of flow of these sig-
nals. The findings suggest an update of neural models of
prediction and predictive coding.

Results
Task, Behavior, and Neurophysiological Recordings. Monkeys per-
formed a delayed match to sample (DMS) task (Fig. 1A). The
task was performed in one of two modes: 1) unpredictable
blocks, where one of three objects was chosen randomly as a
sample on each trial for a block of 50 trials; and 2) predictable
blocks, where the same object was used as a sample for 50
consecutive trials. The purpose of the DMS task was to ensure
that animals were always engaged and attending to the stimuli.
Choosing the match was more accurate and faster when the

sample, seen 0.5 to 1.2 s before, had been predictable. Fig. 1 B,
Upper shows the distribution of average performance across
sessions and monkeys for predictable vs. unpredictable blocks.
Average performance during predictable blocks was 80.6% vs.
74.2% for unpredictable blocks (sign test across sessions, P < 1E-

8). Fig. 1 B, Lower shows the corresponding distribution for re-
action time (RT). Although the RT effect size was small, the
match was found significantly more quickly during predictable vs.
unpredictable blocks (mean RT predictable: 236 ms; mean RT
unpredictable: 239 ms; sign test across sessions, P = 0.017).
We recorded spiking and LFPs using multilaminar electrodes

(Fig. 1D) in five cortical areas spanning sensory (V4), posterior
parietal (lateral intraparietal area [LIP] and posterior parietal
area 7A), and PFC and frontal eye fields [FEFs] (Fig. 1C) in two
monkeys over 71 sessions. For areas on cortical gyri (V4, 7A, and
PFC), we introduced the electrodes perpendicular to cortex
(Fig. 1D) to resolve recordings into superficial layers (2/3) vs.
deep layers (5/6). Data were aligned to the top of cortex as this
was the most robust metric with minimal assumptions (SI Ap-
pendix, Experimental Procedures). Areas FEF and LIP are located
in sulci. Recordings there were not layer resolved.
Neurophysiological analysis focused on the 1 s of fixation

before the sample (presample interval) and the 1 s of sample
presentation (sample interval). During the presample interval,
monkeys could have an expectation of the forthcoming sample
during predictable blocks. Once the sample appeared (sample
interval), predictions about the sample could be confirmed
or violated.

Neuronal Spiking Was Greater to Unpredictable than Predictable
Samples. During the sample interval, spike rates were higher if the
sample was unpredictable compared to when it was predictable. The
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Fig. 1. Task design, recordings, and behavior. (A) Task design: after a 1-s fixation interval, a sample stimulus (one of three pictures) was shown for 1 s. After a
variable delay, the sample reappeared at one of four locations (always randomized). Monkeys saccaded to the sampled stimulus. The sample identity was
either randomized (unpredictable blocks) or held constant (predictable blocks). (B) Behavioral performance across 71 sessions. (Upper) Accuracy on the task
during predictable vs. unpredictable blocks. (Lower) Same, but for reaction time. Solid red/blue bars denote the mean performance and dashed bars denote
the mean ± SEM across sessions. (C) Recorded brain areas. PFC: prefrontal cortex, FEF: frontal eye fields, LIP: lateral intraparietal area, 7A: posterior parietal
area 7A, V4: visual area 4. (D) Multielectrode 16 channel Plexon U/V probes with 200 μm site-to-site spacing. MRIs were used to select grid locations for laminar
(perpendicular) access in areas located on cortical gyri: V4, 7A, and PFC. An example penetration in PFC is shown.

31460 | www.pnas.org/cgi/doi/10.1073/pnas.2014868117 Bastos et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

M
ar

ch
 8

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014868117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014868117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2014868117


black lines in Fig. 2 A–E show the average multiunit activity (MUA)
for unpredictable minus predictable blocks (see SI Appendix, Ex-
perimental Procedures for data preprocessing steps; for MUA re-
sponse to unpredictable vs. predictable without subtraction, see SI
Appendix, Fig. S1). Positive numbers mean more spiking during
unpredictable than predictable blocks. MUA in all areas showed
greater spiking (Fig. 2 A–E, red bars, cluster-based randomization
testing, P < 0.05) to unpredictable than predictable samples. Fur-
ther, analysis of single neurons (SI Appendix, Experimental Proce-
dures) confirmed that, during sample presentation, spikes also
carried more information when the sample was unpredictable (P <
0.05 cluster-based randomization test, Fig. 2F). V4 spiking carried
more sample information than other areas (SI Appendix, Fig. S3A,
Wilcoxon rank sum test, V4 vs. all individual areas, all comparisons
P < 0.01). Further, the increase in spiking to unpredictable samples
was stronger in superficial than deep layers (Fig. 2G) in area V4 but
not in 7A or PFC (Wilcoxon rank sum test for MUA difference,
unpredicted minus predicted, in superficial vs. deep at 0.1 to 0.5 s
postsample onset, P < 0.05).
As expected, given randomly drawn samples during unpre-

dictable blocks, spiking during the presample interval carried no
information about the identity of the forthcoming sample. It did
during predictable blocks in all areas (P < 0.05 cluster-based
randomization test, Fig. 2F). PFC carried more information
about the identity of the forthcoming sample than area V4 (SI
Appendix, Fig. S3B, Wilcoxon rank sum test, V4 vs. PFC, P < 1E-
4). In addition, we analyzed whether the difference in neural
information between unpredictable and predictable blocks was
stronger in superficial vs. deep layers. In the sample interval this
positive difference (more neural information in unpredictable
blocks) was stronger in superficial layers compared to deep
layers (SI Appendix, Fig. S3C, Right subpanel, Wilcoxon rank sum
test, P < 0.01). In the presample interval this negative difference

(more neural information in predictable blocks) was stronger in
deep layers compared to superficial layers (SI Appendix, Fig.
S3C, Left subpanel, Wilcoxon rank sum test, P < 1E-8).

Predictability Changed the LFP Power Balance. Sample predictability
had different effects on different oscillatory bands/layers/areas.
For each frequency, we calculated percent change in LFP power
for unpredictable vs. predictable blocks (Fig. 3 A–E). During the
sample interval, gamma-band power (∼40 to 90 Hz) was higher
to unpredictable samples in all areas. In all areas except FEF,
theta-band power (∼2 to 6 Hz) was higher to unpredictable than
predictable samples (red lines in Fig. 3 A–E indicate significantly
more power during unpredictable samples, P < 0.05, cluster-
based randomization test). The alpha (8 to 14 Hz) and beta
(15 to 30 Hz) bands generally showed the opposite effect (blue
lines in Fig. 3 indicate significantly more power during predict-
able samples, P < 0.05, cluster-based randomization test). It was
generally higher to predictable than unpredictable samples. The
one exception was posterior parietal area 7A where there was
higher power in a high-beta band (∼20 to 27 Hz) during un-
predictable samples (Fig. 3C, but note that in 7A, power in a
lower frequency band, 6 to 14 Hz, was higher for predictable
samples). The differences in power between predictable vs. un-
predictable blocks remained to a large extent significant even
after equating for the time between repetitions of the same
sample in the two block types (SI Appendix, Supplemental Results
and Fig. S5).
The strength of these power differences varied as a function of

layer. Areas V4 and PFC showed a greater increase in
superficial-layer than deep-layer gamma power during unpre-
dictable samples (Fig. 3F, Wilcoxon rank sum test comparing
power modulation in superficial vs. deep layers, P < 0.05) as did
theta in area V4 (Fig. 3I). The PFC showed a greater increase in
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Fig. 2. Spiking to unpredictable vs. predictable samples. (A–E) MUA of unpredictable minus predictable blocks. Mean across all available MUAs per area (N =
1,664, 736, 704, 880, and 1,472 for V4, LIP, 7A, FEF, and PFC, respectively), ±1 SEM across MUAs. Horizontal bars denote significance at P < 0.05 for un-
predictable vs. predictable, corrected for multiple comparisons (SI Appendix, Experimental Procedures). (F) Mean information ± SEM, quantified with percent
explained variance (PEV) (see Experimental Procedures) in thresholded single units across all areas about the sample during predictable (blue line) vs. un-
predictable (red line) blocks. Horizontal blue bars indicate significant (P < 0.05, corrected for multiple comparisons) unpredictable < predictable information.
Horizontal red bars indicate significant (P < 0.05, corrected for multiple comparisons) unpredictable > predictable information. (G) Unpredictable minus
predictable MUA for deep layers (5/6) vs. superficial layers (2/3), averaged between 0.1 and 0.5 s postsample onset. Mean ± SEM across MUAs in superficial
(N = 575, 215, 397 for areas V4, 7A, and PFC) vs. deep layers (N = 615, 248, and 468 for areas V4, 7A, and PFC). Red asterisk denotes significant differences.
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superficial layer than deep alpha (8–14 Hz) and beta (15 to 30
Hz) during predictable samples (Fig. 3 G and H, Wilcoxon rank
sum test, P < 1E-3 for both alpha and beta). Area 7A showed a
greater increase in superficial layer than deep beta (15–30 Hz)
during unpredictable samples (Fig. 3G, Wilcoxon rank sum test,
P < 1E-4). In area V4 in the alpha band (8–14 Hz), superficial
and deep layers had different signs of modulation with respect to
sample predictability. V4 deep-layer alpha increased with pre-
dictable samples but superficial-layer alpha increased to unpre-
dictable samples (Fig. 3H, Wilcoxon rank sum test comparing
power modulation in superficial vs. deep layers, P < 1E-8).
In, general, the sites with strong MUA modulation (unpre-

dictable vs. predictable) were also sites with strong LFP gamma
power modulation (unpredictable vs. predictable, SI Appendix,
Supplemental Results and Fig. S2). The positive relationship be-
tween MUA and LFP gamma-power modulation was consis-
tently strongest in superficial as compared to deep layers (SI
Appendix, Fig. S2B, Wilcoxon rank sum test comparing correla-
tion between MUA and gamma-power modulation in superficial
vs. deep layers, P < 1E-4 for all areas). By contrast, in area V4
the negative relationship between MUA and LFP alpha- and
beta-power modulation were consistently strongest in deep as
compared to superficial layers (SI Appendix, Fig. S2 C and D,
Wilcoxon rank sum test comparing correlation between MUA
and alpha- and beta-power modulation in superficial vs. deep
layers, P < 0.05 for both alpha and beta).
The increase in gamma and theta power was greater in V4

compared to higher areas (SI Appendix, Fig. S3 D and G). V4
showed the greatest increase in gamma and theta power during

unpredictable samples while PFC/7A showed the smallest. In
contrast, in the alpha band (8 to 14 Hz), LIP, PFC, and 7A had the
strongest power modulation to predictable samples. The strength
of alpha-band power modulation in all higher-order areas was
stronger than in V4 (SI Appendix, Fig. S3F, V4 alpha-band power
modulation vs. all other areas, Wilcoxon rank sum test, P < 1E-2).
In the beta band (15 to 30 Hz) PFC had the strongest power
modulation to predictable samples of any area (SI Appendix, Fig.
S3E, PFC beta-band power modulation vs. all other areas, Wil-
coxon rank sum test, P < 1E-16 for all comparisons).
Sample predictability also modulated LFP power during the

presample interval but the effects were weaker and sparser.
There was greater gamma/high-beta power during unpredictable
than predictable blocks in V4, LIP, and 7A and reduced alpha/
beta power in V4, 7A, and FEF (P < 0.05, SI Appendix, Fig.
S4 A–E). During the presample interval, power modulation did
not differ between superficial vs. deep layers (all comparisons,
P > 0.05).

Violation of Predictions and Time Course of Prediction. During pre-
dictable blocks, a strong expectation of a specific sample object
could build. Then, when there was a switch to an unpredictable
block, that expectation was violated for at least the first few
trials. We examined the LFP power as a function of the number
of trials since a switch from a predictable to an unpredictable
block. This revealed strong gamma increases in all areas that
were maximal within the first few trials of such a “violation” of
expectation (SI Appendix, Supplemental Results and Fig. S6A).
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We next analyzed the trial-by-trial power change in predict-
able blocks relative to the switch from an unpredictable block.
For this analysis, each trial’s power on predictable trials com-
pared to the average of all trials during an unpredictable block.
In the gamma band, responses to predictable samples gradually
reduced, reaching their minimum response at different trials in
different areas. This followed a hierarchical progression with V4
reaching its minimum earliest at trial 19 (reflecting 18 repeti-
tions), LIP at trial 35, 7A at trial 46, and both FEF and PFC at
trial 49 (SI Appendix, Fig. S7A). In the alpha and beta bands,
sample repetition caused power to increase. This plateaued after
a number of repetitions. There was no clear hierarchical pro-
gression, with different areas reaching their maximum alpha/beta
power in a wide variety of repetitions (range in areas LIP, 7A,
FEF, and PFC: trials 12 to 47, SI Appendix, Fig. S7B). These
increases in beta power and decreases in theta/gamma power
tracked the animals’ behavioral improvement within predictable
blocks (SI Appendix, Supplemental Results and Fig. S8).

Stimulus Specificity of Spiking and LFP Power Modulation. We next
investigated whether the effects of predictability were stimulus
specific. We tested whether the modulation of LFP power was
strongest at recording sites that preferred (showed higher spiking
to) the specific stimulus that is being predicted. We addressed
this in V4 because its spiking showed the strongest spiking se-
lectivity for the identity of the sample objects (SI Appendix, Fig.
S3A).
We first analyzed each V4 site’s MUA activity for sample object

specificity. For each V4 site, the sample that produced the highest
MUA activity was defined as the “preferred” sample. The sample
object that produced the least MUA activity was the “nonpreferred”
sample. We calculated differences in power during unpredictable vs.
predictable blocks for the preferred and nonpreferred samples
separately.
Power modulation was stimulus specific. It was higher for the

recording site’s preferred than nonpreferred sample object. Dur-
ing the sample interval, LFP gamma power and MUA modulation
(unpredictable > predictable) was greater to the preferred sample
in superficial cortical layers (P < 0.01, Wilcoxon rank sum test
comparing each site’s preferred vs. nonpreferred power modula-
tion) but not in deep layers (Fig. 4 A and B for LFP gamma and
Fig. 4 I and J for MUA). An ANOVA testing for interaction
between factors preference and layer on neural modulation by
predictability revealed a significant interaction for MUA (P < 0.05
for MUA, P = 0.056 for gamma). Alpha- and beta-power modu-
lation (predicted > unpredicted) was stronger to the preferred
object in deep cortical layers (Fig. 4 C and E, P < 0.05, Wilcoxon
rank sum test comparing each site’s preferred vs. nonpreferred
power modulation) but not superficial (Fig. 4 D and F, P > 0.05,
Wilcoxon rank sum test). Theta-power modulation (unpredict-
able > predictable) was significantly greater for preferred vs.
nonpreferred samples only in deep layers (P < 0.05, Wilcoxon
rank sum test comparing each site’s power modulation for pre-
ferred vs. nonpreferred sample objects, Fig. 4G). ANOVAs testing
for interactions between factors preference and layer on neural
modulation by predictability were not significant for theta, alpha,
or beta (P > 0.05). Similar selectivity effects on LFP power were
found in the presample interval (SI Appendix, Supplemental Results
and Fig. S4).

Network Interactions for Predictability. We first examined network
interactions using coherence analysis between LFPs recorded in
each pair of areas. During the sample interval, this confirmed
coherence networks involving theta and gamma for unpredict-
able samples and alpha and beta for predictable samples (SI
Appendix, Supplemental Results and Figs. S9 and S10, for pre-
sample coherence, see SI Appendix, Fig. S11). We next examined
the direction of interactions between areas. We used

nonparametric Granger causality (GC), which separately mea-
sures the impact of area A to B vs. B to A at each frequency from
1 to 100 Hz (45). To assess feedforward vs. feedback flow, we
assumed the following cortical hierarchy (from lower to higher):
V4, LIP, 7A, FEF, and PFC (46). We first focused on the sample
interval. Fig. 5A shows the percentage of significantly modulated
connections (cluster-based randomization test, P < 0.05) for both
feedforward (solid lines) and feedback (dotted lines) directions
(modulation of Granger causality for all individual area pairs is
shown in SI Appendix, Fig. S12). The red line indicates unpre-
dictable > predictable GC while the blue line shows the opposite
(cluster-based randomization test, P < 0.05). Fig. 5 B and C show
the sums of modulated connections per area as a function of
whether connections into and out of the area were feedforward
or feedback, respectively.
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Fig. 4. Pathway specificity of LFP power and MUA modulation. (A–H)
Unpredicted vs. predicted percent change in LFP power for the preferred
and nonpreferred stimulus. (A) Deep layers in the gamma band (40 to 90 Hz),
(B ) superficial layers in the gamma band, (C) deep layers in the beta band
(15 to 30 Hz), (D) superficial layers in the beta band, (E) deep layers in the
alpha band (8 to 14 Hz), (F) superficial layers in the alpha band, (G) deep
layers in the theta band (2 to 6 Hz), (H) superficial layers in the theta band. (I)
MUA modulation of deep cortical layers in area V4, unpredictable minus
predictable during the sample interval, (J) same as I, but for superficial lay-
ers. Mean ± SEM. Red asterisk denotes significant (P < 0.05) differences
between neural modulation of preferred vs. nonpreferred samples.
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The strength and sign of modulation of GC by predictability
depended on frequency and directionality. In the feedforward
direction, unpredictable > predictable GC modulation peaked in
the gamma-frequency range (Fig. 5A, solid red lines). Although
the feedback direction was also positively modulated (Fig. 5A,
dotted red lines), the percentage of modulated connections was
lower than feedforward gamma (χ2 test for percentage of positive
modulation across the gamma band, 40 to 90 Hz, in the feed-
forward vs. feedback directions, 0.57 vs. 0.33, P < 1E-13). In the
theta band (2–6 Hz), an approximately equal percentage of both
feedforward and feedback connections had positive task modu-
lation (unpredicted > predicted GC).
Notably, virtually all directed functional connections with

greater GC during predictable than unpredictable samples were in
the alpha and beta bands (blue lines in Fig. 5A). And they were
mostly feedback connections. The percentage of feedback direc-
tion GC that was greater for predictable than unpredictable
samples was higher than those in feedforward direction for alpha
(χ2 test for percentage of negative modulation across the alpha
band, 8 to 14 Hz, in the feedforward vs. feedback directions, 0%
vs. 29%, P < 1E-5), beta (χ2 test for percentage of negative
modulation across the beta band, 15 to 30 Hz, in the feedforward
vs. feedback directions, 10% vs. 30%, P < 1E-5), and theta (χ2 test
for percentage of negative modulation across the theta band, 2 to
6 Hz, in the feedforward vs. feedback directions, 0% vs. 10%, P <
0.05). There was no predictable > unpredictable GC modulation
in the gamma band in either direction. In short, feedforward
functional connections were enhanced during unpredictable

samples, especially in the gamma range, whereas feedback func-
tional connections were enhanced during predictable samples with
a peak at alpha/beta frequencies.
To determine the layer specificity of these effects, we focused

on the two areas at the bottom and top of the hierarchy: V4 and
PFC. The rationale was that GC interactions from V4 to the
other areas are all feedforward, and interactions from PFC to the
other areas are all feedback. The modulation of these feedfor-
ward and feedback functional connections by layer is shown in
Fig. 5D (for V4) and Fig. 5E (for PFC) during the sample in-
terval, and for PFC during the presample interval in Fig. 5F.
During the sample interval, feedforward connections from V4

to the rest of the areas were greater during unpredictable sam-
ples. This modulation was greater in superficial layers than deep
layers in theta, alpha, beta, and gamma bands (Fig. 5D, Wilcoxon
rank sum test comparing modulations for all feedforward chan-
nel pairs in superficial vs. deep layers, P < 1E-3 for theta, P < 1E-
14 for alpha, P < 1E-8 for beta, and P < 1E-3 for gamma). By
contrast, in PFC feedback, GC was greater during predictable
samples, especially in the beta band (Fig. 5E). This effect was
stronger in superficial than deep layers (Fig. 5E, Wilcoxon rank
sum test comparing task modulations for all feedback channel
pairs in superficial vs. deep, P < 1E-16 for the beta band, not
significant for the alpha band). In the theta band, PFC feedback
GC in deep layers was significantly stronger during predictable
samples compared to superficial layers (Fig. 5E, Wilcoxon rank
sum test comparing task modulations for all feedback channel
pairs in superficial vs. deep, P < 1E-5 for the theta band).
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Fig. 5. Granger causal networks for unpredicted vs. predicted samples. (A) Percentage of interareal functional connections with significant (P < 0.05, cor-
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During the presample interval, PFC feedback was different
depending on whether it arose from superficial vs. deep layers.
Superficial-layer PFC feedback was greater during unpredictable
blocks but deep-layer PFC feedback was greater during pre-
dictable blocks (Fig. 5F). The differences between layers was
significant for theta, alpha, and beta (Fig. 5F, Wilcoxon rank sum
test comparing modulations for all feedback channel pairs in
superficial vs. deep layers, P < 0.01 for the theta band, P < 1E-7
for the alpha and beta bands).

Higher Order Cortex Modulates Spiking and Gamma in V4. Finally,
we analyzed whether oscillations in higher-order areas (LIP, 7A,
FEF, and PFC) couple to, and potentially inhibit, spiking and
gamma in area V4. We used a general linear modeling (GLM)
framework (see Experimental Procedures) to test whether MUA
and gamma in V4 could be explained by power in higher-order
cortex. We performed this GLM with laminar-resolved regres-
sors in PFC and 7A. We attempted to explain trial-by-trial var-
iance in superficial and deep layers of V4. Higher-order cortex
inhibition of V4 would be reflected in a regression coefficient
with a negative sign.
MUA in deep layers of V4 was negatively coupled to theta in

superficial and deep layers of 7A, alpha in LIP and deep layers of
PFC, and beta in LIP, FEF, and superficial layers of PFC (SI
Appendix, Fig. S13, sign test for average regression coefficient
across sessions, P < 0.05 for all comparisons). MUA in superficial
layers of V4 was not significantly coupled to trial-by-trial varia-
tions in higher-order cortex power. Gamma in deep layers of V4
was negatively coupled to beta in superficial and deep layers of
PFC and alpha in superficial layers of PFC. In addition to these
negative regression coefficients, we also found positive coeffi-
cients. Beta in superficial and deep layers of area 7A positively
coupled to gamma in superficial and deep layers of V4 (SI Ap-
pendix, Fig. S13C, sign test for average regression coefficient
across all available sessions, P < 0.05). Gamma in all areas except
LIP positively coupled to V4 gamma (SI Appendix, Fig. S13D, sign
test for average regression coefficient across all available sessions,
all comparisons, P < 0.05).

Discussion
Our results show differences in oscillatory dynamics between
cortical layers as animals switch between two different modes of
processing. In the “bottom-up”mode, a new sensory input had to
be processed on every trial. In the other, “top-down” mode the
same stimulus was used on every trial and thus there was no need
to fully process new bottom-up inputs. In bottom-up mode,
gamma power and feedforward Granger causality predominated.
By contrast, in top-down mode, alpha/beta power and feedback
Granger causality predominated.
This could be due to a variety of processes that differ between

the two modes. One is habituation/adaptation due to stimulus
repetition. To examine this, we measured effects as a function of
the time between repetitions of the same sample object. This
revealed that short-term adaptation alone did not explain the
results. Longer-term stimulus repetition could have contributed.
Passive adaptation effects tend to reach their maximum after just
a single repetition (47). In our study repetition effects took
dozens of trials to reach their maximum and correlated with the
behavioral time course of improvement. This suggests that the
animals were exploiting the increasing familiarity due to repeti-
tion. This is not surprising. Repetition is a foundation of pre-
dictability. Most, if not all, forms of prediction likely depend on
repetition whether the repetition was from past experience or
generated in the recent past (seconds to minutes).
In addition, the neurophysiological signatures of prediction

and passive stimulus repetition are divergent. In previous studies
where stimulus repetition was not behaviorally relevant, gamma-
band power and synchronization in visual cortex increased with

repetition, whereas we observed decreases (48, 49). In our study,
repetition was used by the animals to perform the task. Here, we
have used repetition as an initial tool to elicit predictions and
top-down processing. In future paradigms, we will test more
cognitive forms of prediction, such as learned associations.
In bottom-up mode, new inputs needed to be fully attended,

processed, and temporarily held in working memory. In top-
down mode, less attention could be paid to the repeating stim-
ulus; it could be stored in and recalled from long-term memory.
Such differences can be captured under the umbrella of pre-
dictive coding theory.

Relation to Predictive Coding Models. Many predictive coding
models share common elements. Prediction (PD) units antici-
pate forthcoming sensory inputs. They inhibit prediction error
(PE) units when inputs match predictions. A mismatch due to an
unpredictable input disinhibits the PE units. They feedforward
the unpredicted input which updates the internal models that
generate the predictions. Models differ on the details of the
implementation in the brain. Some models (50) propose that
prediction error signals act locally in each cortical area to update
models. Predictions flow between areas in both feedforward and
feedback directions. Other models (12, 14) instead suggest that
predictions come from higher cortical areas that act on lower
cortical (sensory) areas to gate the feeding forward of prediction
errors. Of special note, many current models of predictive coding
emphasize that prediction errors can be modulated by precision
weighting, for example, by increasing attention or sensory evi-
dence (12, 51, 52). Here, we have used a task that did not set out
to explicitly modulate the precision of sensory samples in the
unpredicted vs. predicted blocks. Sensory samples were always
presented at full contrast; and in both block types, monkeys were
required to attend to the samples in order to perform an at-
tentional search. Therefore, we did not explicitly consider the
issue of precision weighting of prediction errors.
A distinct class of models goes further in proposing a neuro-

physiological implementation involving distinct oscillations.
“Rhythm-based” models suggest that superficial cortical layers
(layers 2 and 3) feedforward prediction errors using gamma.
Deep-layer cortex (layers 5 and 6) feedback predictions using
alpha/beta (1, 19). Our results are more consistent with the
rhythm-based models. We showed differences between areas,
with higher areas contributing more to prediction, and rhythmic-
and laminar-based differences between areas. Below, we sum-
marize and discuss these effects.

The Contribution of Cortical Rhythms to Predictive Processing. Al-
pha/beta and gamma have properties that suggest a general role
in gating and control. They are common and anticorrelated
across cortex. Gamma power is high during sensory inputs; al-
pha/beta power is high when they are ignored. In visual cortex,
gamma power is high and alpha low during sensory stimulation.
When a stimulus needs to be filtered or ignored, gamma power is
low and alpha is high (43, 53–55). Further, alpha/beta oscillations
in deep cortical layers are anticorrelated with superficial-layer
gamma associated with spiking carrying sensory inputs (26, 27).
The balance between alpha/beta and gamma reflect the encod-
ing, maintenance, and read-out of working memory (56). The
general idea is that top-down signals are fed back through alpha/
beta in deep cortical layers. They inhibit and thus gate the ex-
pression of gamma in superficial layers that help feed forward
and maintain the spiking carrying sensory inputs.
Extrapolating from the rhythm-based models of predictive

coding (1, 19), this suggests a framework we call predictive routing
(PR) (Fig. 6). In PR, there are not specialized circuits that com-
pute prediction errors and send them feedforward. Rather, PR
uses the same cortical circuitry used for other functions (sensory
processing, attention, maintenance/control of working memory,
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etc.). Predictions act by alpha/beta preparation that actively inhibit
the specific pathways in sensory cortex that would process the
predicted input. As a result, there is less gamma and spiking to
predicted inputs (and less feedforward output as a result). In other
words, prediction errors do not result from a comparison between
predictions and inputs via a specialized circuit. They result from
the feed-forward passing of unexpected inputs because their
pathways have not been prepared (functionally inhibited).
This does not mean that alpha/beta (or gamma) have the exact

same roles all over cortex. For example, in prefrontal cortex, beta
has been modeled as an inhibitory–excitatory network but with
slower time constants than what would produce a gamma (57).
By contrast, modeling suggests that in parietal cortex, there is a
distinction between beta-1 (14 to 20 Hz) and beta-2 (24 to 30 Hz)
(58) and that parietal beta-1 may act as a memory buffer acti-
vated by strong cortical inputs that feeds forward violations to
the PFC (59). Indeed, we found in this study, that in parietal
cortex (area 7A) beta was unique and beta was functionally ex-
citatory (positively correlated with violations and local spiking)
unlike the other areas. Below, we elaborate on how our results
support different models of predictive coding.

Theta-band coherence and Granger causal interactions were
stronger during unpredictable stimuli in the sample interval.
These interactions were strongest between superficial layers of
V4 and the other members of the network. Theta-band inter-
actions were not previously proposed as candidates for pro-
cessing unpredictable stimuli. However, theta is well known to be
a slow rhythm in which faster rhythms such as gamma, can nest
(60–62) and aid long-range communication (63). In addition, a
previous study identified theta as a carrier for feedforward in-
teractions in the visual system (30). In predictive routing, what-
ever mechanisms are already in place for feedforward processing
are enhanced during unpredictable processing. Therefore, it
makes sense that theta (and gamma) from V4 to higher-order
cortex is enhanced during unpredicted stimuli, because this re-
flects an up-regulation of the feedforward channel.

Unpredicted Stimuli Enhance Spiking in Superficial Layers. At each
level of the cortical hierarchy tested, neurons spiked more to,
and carried more information about, unpredictable compared to
predicted stimuli. Neurons in superficial cortical layers (L2/3) of
V4 showed stronger effects than deep layers. In addition, only
superficial layers had unpredicted spiking selective to the pre-
dicted stimulus. Superficial layers 2/3 contain the majority of
feedforward projecting cells. This laminar specificity suggests
that unpredicted inputs are preferentially processed in superfi-
cial layers and fed forward.

Spiking Reflects an Upcoming Predictable Stimulus. We found that
during trial blocks in which the monkeys could predict the up-
coming stimulus, all cortical areas we recorded carried infor-
mation about it before it appeared. PFC contained the most
prestimulus information. In addition, we found that deep layers
held more information about the upcoming sample than super-
ficial layers. This is consistent with hierarchical models that
propose that generating predictions is primarily a function of
higher than sensory cortex and deep layers.

Modulation of Rhythms by Prediction Are Layer Dependent. In all
areas studied, unpredictable stimuli evoked more gamma (40 to
90 Hz) power and less alpha/beta (8 to 30 Hz) power compared
to predictable stimuli (beta in area 7A was an exception). These
effects were strongest in the first few trials when transitioning
from a predictable block to an unpredictable block, potentially
reflecting a violation, or prediction error. This effect and the
positive correlation between gamma and spiking (SI Appendix,
Fig. S2) were stronger in superficial than deep cortical layers.
There was generally more alpha/beta power to predictable than
unpredictable stimuli but layer differences varied by area. This
generally supports rhythm-based models positing that gamma
transmits prediction errors and alpha/beta transmits predictions.

Modulation of Rhythms by Prediction Are Stimulus Specific. The in-
creases in gamma power (and spiking) with unpredicted stimuli
and the increased alpha/beta with predicted stimuli were stim-
ulus specific. Effects were larger at recoding sites where spiking
preferred (was greater to) the specific stimulus that was pre-
dicted. For spiking, this selectivity occurred only in superficial
layers. For gamma, this selectivity was only significant in super-
ficial layers, and for alpha and beta, this selectivity was only
significant in deep layers. Therefore, rhythmic modulation of
power by predictability is stimulus specific. This supports the
view that oscillations can be modulated in a representationally
specific way (64), rather than only in a nonspecific way across
wide areas of cortex. The specificity is a central feature of pre-
dictive routing, where alpha/beta inhibits the pathways that
process the specific predicted stimulus and the increased gamma/
spiking occurs because the pathways processing other stimuli
were not inhibited.

Fig. 6. Predictive routing model. Arrows and connections represent func-
tional (not anatomical) connections between areas/layers. Thick lines rep-
resent effective connections with increased influence; thin lines represent
effective connections with decreased influence. The Upper boxes represent
superficial layers (1 to 4) and the Lower boxes represent deep layers (5/6).
(Left subpanel) Sensory cortex is dynamically prepared to process its pre-
ferred stimulus, stimulus A, by feedback which inhibits MUA and enhances
alpha/beta in deep layers. Enhanced deep-layer alpha/beta functionally in-
hibits superficial-layer processing of stimulus A by reducing spiking and
gamma, reducing feedforward outputs. (Right subpanel) When a strong
prediction for stimulus B is present and stimulus A is presented (as in the first
few trials of an unpredictable block after a predictable block where “B” was
the repeated/predicted sample), there is less feedback alpha/beta inhibition
to the A column. Deep-layer to superficial-layer inhibition is weak or absent.
The A column is more excitable and responds to stimulus A with more
gamma/spiking and enhanced feedforward output from superficial layers (a
prediction error). Although we hypothesize this mechanism occurs at the
level of cortical columns, it could apply to any pathway that processes the
specific predicted stimulus. We also hypothesize that this mechanism can be
graded to reflect varying strengths of prediction.
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Networks and Directionality. Both coherence and Granger cau-
sality analysis showed that rhythmic interactions were modulated
by stimulus predictability at several frequencies. Gamma-band
coherence within and between areas was higher with unpredict-
able than predictable stimuli. This effect was largest for coherence
between superficial layers of areas V4 and PFC. Granger causality
analysis further showed that the increase in gamma-band coher-
ence with unpredictable stimuli was stronger in the feedforward
than feedback direction. In V4, this was more prominent in su-
perficial layers. There was overall greater alpha/beta coherence
with predictable stimuli. The strongest effects involved PFC and
were stronger in the feedback compared to feedforward direction.
In the presample interval, the enhanced Granger causality during
predictable stimuli was strongest between deep layers of PFC to
the rest of the network. These results are in line with hierarchical
and rhythms models where (gamma-based) prediction errors pri-
marily feed forward flow up the cortical hierarchy and (alpha/beta-
based) predictions flow down the cortical hierarchy. They suggest
that modulation of interareal synchronization at distinct fre-
quencies is a central mechanism in communicating specific (pre-
dicted vs. unpredicted) information (65–68). In addition,
prefrontal control over behavior is thought to be mediated by
dynamic patterns of neuronal functional connectivity (69).

Higher-Order Cortex Inhibition of V4. Trial-by-trial beta power in all
higher-order areas except 7A negatively coupled to both spikes
and gamma power in V4. Interestingly, this corticocortical top-
down inhibition of V4 spiking was found only in deep layers,
despite the fact that anatomically, top-down feedback targets
both superficial and deep layers of V4 (46). In contrast, the ac-
tual effects of prediction on spiking and gamma were stronger in
superficial layers. This suggests distinct layers for transmitting
top-down prediction signals (in deep layers of V4) vs. bottom-up
routing of unpredicted information (in superficial layers of V4).
It also suggests a local circuit mechanism in visual cortex where
deep layers functionally inhibit activity of superficial layers (70).

Summary. Our results suggest a hierarchical layer and frequency-
specific framework for top-down vs. bottom-up processing re-
lated to stimulus predictability. We interpret the results in a
framework we call predictive routing (Fig. 6). Unpredictable
stimuli evoked stronger feedforward- superficial-layer gamma/
spiking (and theta), especially when they violated a previous
prediction: the hallmark of a prediction error signal. Superficial-
layer parietal area 7A high beta also signaled violations in both
feedforward and feedback directions, which could engage
working memory update mechanisms to process and hold
unpredicted information online. Coherence and feedback con-
nectivity were enhanced in the alpha/beta band when a stimulus
was predictable. In the presample interval this enhanced feed-
back connectivity during predictable stimuli originated in deep
layers of PFC. Alpha/beta power in higher-order cortical areas
LIP, FEF, and PFC negatively modulated spiking in deep layers
of V4. The modulatory effects of stimulus predictability on al-
pha/beta and on gamma/spiking modulation was strongest at the
sensory cortical sites that preferred the predicted stimulus.
Spiking/gamma in sensory cortex was only selective to the pre-
dictive stimulus in superficial layers. Alpha/beta was only selec-
tive to the predicted stimulus in deep layers. These results are
consistent with the predictive routing model, which states that
there need not be specialized circuits for extracting prediction
error. Rather, when stimuli are predictable, these rhythmic,
layer-specific mechanisms prepare and inhibit columns in sen-
sory cortex that process the predicted stimulus. In the absence of
these pathway-specific prediction signals, sensory samples re-
ceive stronger processing, causing enhanced spiking and feed-
forward gamma. Together, these results suggest that predictive
coding may stem from rhythmic interactions between lower

frequency rhythms in deep cortical layers that signal predictions
and inhibit the superficial-layer gamma and spiking in the sen-
sory pathways that match those predictions.

Experimental Procedures. We performed multilaminar recordings
using linear array U and V probes (Plexon). We recorded spiking
and LFP activity in visual area V4, parietal, and prefrontal cor-
tices of two macaque monkeys (Macaca mulatta) while the ani-
mals performed a delayed match to sample task. All surgical and
animal care procedures were approved by the Massachusetts
Institute of Technology (MIT)’s Committee on Animal Care and
were conducted in accordance with the guidelines of the Na-
tional Institute of Health and MIT’s Department of Comparative
Medicine. Additional details of the study’s methodology are
provided in SI Appendix, Experimental Procedures.

Behavioral Training and Task. Monkeys were trained to sit com-
fortably in a primate chair inside a sound attenuating behavioral
testing booth. They were seated 50 cm away from a LCD monitor
with a 144-Hz refresh rate (ASUS, Taiwan). Using positive re-
inforcement, we trained monkeys to perform a visual search task
(Fig. 1A). Monkeys fixated on a point at the center of the screen
(fixation window radius: 2 to 3 visual degrees) for a duration of 1
s, were presented with one of three cue objects for a duration of
1 s, and were required to maintain fixation over a delay (between
0.5 and 1.2 s). A search array then appeared that consisted of the
cued item together with either one or two distractors presented
at the same eccentricity (3° to 8°), but different visual quadrants
as the cued object. The position of the cued object and the
distractors were always randomly chosen. Monkeys were rewar-
ded with a few drops of diluted juice if they performed a saccade
toward the cued item. Behavioral performance was high for each
of the monkeys (monkey S: 77% over 41 sessions, monkey L:
75% over 30 sessions). Monkeys were trained on this task using a
library of 22 sample images. For recordings, we used a subset of
these images (12), choosing a total of 3 per session. Most ses-
sions (65 out of 71) used the 3 objects depicted in Fig. 1: an
orange, a green block, and a blue car.
To manipulate prediction, the task was performed either with

unpredictable or predictable cuing. During unpredictable cuing,
samples were randomly drawn on each trial. In block cuing/sam-
pling, the sample was held constant for the duration of the block.
The trial-by-trial and blocked modes each lasted for 50 trials be-
fore switching block modes. The starting order was randomized
over sessions. The task design is schematized in Fig. 1A.

Neurophysiological Recordings. All of the data were recorded
through Blackrock headstages (Blackrock Cereplex M), sampled
at 30 kHz, band passed between 0.3 Hz and 7.5 kHz (first order
Butterworth high pass and third order Butterworth low pass),
and digitized at a 16-bit, 250 nV/bit. All LFPs were recorded with
a low-pass 250-Hz Butterworth filter, sampled at 1 kHz, and
alternating current (AC) coupled.
We implanted the monkeys with a custom-machined carbon

PEEK chamber system with three recording wells placed over
visual/temporal, parietal, and frontal cortex. The process for
making the chambers was based on design principles outlined
previously (71). Briefly, we first took an anatomical MRI scan
(0.5 mm^3 voxel size) and/or computed tomography (CT) scan
to extract the bone and coregister the skull model with the brain
tissue. We designed the center of each chamber to overlie the
primary recording area of interest and to have an optimal angle
for perpendicular recordings relative to the cortical folding.
Postoperatively, after the recording chambers were implanted,
MRIs were taken with the recording grid in place, filled with
water, which created a marker to coregister each possible elec-
trode trajectory with the animal’s anatomy, and to confirm tra-
jectories that were as close to perpendicular as possible.
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The areas where we could achieve perpendicular recordings
(for laminar sampling) on the overlying gyrus were V4 (foveal
and parafoveal representations), parietal cortex (area 7A), and
prefrontal cortex (area 8A, ventro and dorsal lateral prefrontal
cortex [VLPFC/DLPFC]). The areas where we recorded without
laminar alignment (due to their location in sulci) were areas FEF
and LIP.
We recorded a total of 71 sessions with laminar probes. In each

session, we inserted between 1 and 3 laminar probes (“U probes”
and “V probes” from Plexon) into each recording chamber with
either 100- or 200-μm intersite spacing and either 16 or 32 total
electrodes per probe. This gave a total linear sampling of 3.0 to
3.1 mm on each probe. Between three and seven probes in total
per session were used, with a total channel count ranging between
48 and 128 electrodes per session. The recording reference was
the reinforcement tube, which made metallic contact with the
entire length of the probe (total probe length from connector to
tip was 70 mm). Some U/V probes had noisy channels (average
power greater than 2 SDs above the mean of all channels, this
occurred on less than 5% of all channels), which were interpolated
based on nearest neighbors prior to analysis.

Multiunit Activity Extraction and Spike Sorting. For the analysis of
the analog MUA we band-pass filtered the raw, unfiltered, 30-kHz
sampled data into a wide band between 500 and 5,000 Hz, the
power range dominated by spikes. The signal was then low-pass
filtered at 250 Hz and resampled to 1,000 kHz. The advantage of
this signal is that it captures all nearby units, including those with
low signal-to-noise ratio that would not be captured with a strict
threshold. For the analysis of thresholded spikes, we manually
sorted spikes using a Plexon offline sorter. For additional details
please see SI Appendix, Experimental Procedures.

Local Field Potential Power, Coherence, and Granger Causality
Analysis. All analyses were performed with customized MAT-
LAB scripts and with Fieldtrip software (72). Bipolar derivation is a
recommended prestep prior to Granger causality and coherence
analysis, as the presence of a common reference can lead to spu-
rious results (73, 74). In addition, bipolar derivation enhances the
spatial localization of LFP signals and removes the common ref-
erence and any common noise or volume conduction in the signal
(75). Here, we computed the sample-by-sample bipolar differences
by subtracting contacts that were at a distance of 400 μm: next-
nearest neighbors for the laminar probe data spaced at 200 μm
between contacts, and next-next-nearest neighbors for the probe
data spaced at 100 μm between contacts.
We then estimated power, coherence, and Granger causality on

these bipolar derivations. We estimated power at all frequencies
from 0 to 250 Hz using multitaper spectral estimation (smoothing
window of 5 Hz), leading to nine tapers per spectral estimate,
using window sizes of 1 s (0 to 1 s relative to sample onset is the

period of visual stimulation, −1 to 0 s relative to sample onset is
the prestimulus fixation interval) per trial. These Fourier coeffi-
cients were then used to calculate the cross-spectral density ma-
trix, from which we derived coherence and nonparametric spectral
Granger causality (45).

Neural Information Analysis with Percent Explained Variance. We
quantified the amount of variance in the task (sample identity)
that could be explained by the spike rate of neurons using an
unbiased statistic called the omega squared (76). For each point
in time relative to sample onset, the amount of variance that
firing rate of a given neuron across trials explained about the
sample was measured. This was done separately for predictable
and unpredictable blocks. We used nonparametric cluster-based
statistics to assess differences in neural information during pre-
dictable vs. unpredictable blocks.

General Linear Model Analysis. We assessed whether trial-by-trial
fluctuations in LFP power during the sample interval in LIP, 7A,
FEF, and PFC could explain variance in gamma power and
MUA activity (averaged between 0.05 and 0.4 s postsample on-
set) in V4. We used a GLM with higher-order power (which had
laminar resolution in PFC and 7A) as the regressors (77). We ran
separate GLMs per session and then combined coefficients
across sessions. We then used a sign test to assess whether the
median sign of these regressors was significantly positive or
negative (reflecting functional inhibition of V4 neural activity by
higher-order cortex power).

Statistical Testing. We computed whether the MUA, power, co-
herence, and Granger causality was systematically different be-
tween conditions (predictable vs. unpredictable). To do this, we
calculated either the mean difference or percent change for each
channel or interareal channel pair of predictable vs. unpredict-
able sampling. We then quantified whether this raw difference or
percent change was significant by performing a cluster-based
nonparametric randomization test (78). For additional details
on statistical testing, please see SI Appendix, Experimental
Procedures.

Data Availability.Data are available on request by contacting Earl
Miller (ekmiller@mit.edu).
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