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Working memory is the fundamental function by which we break free from reflexive input-output reactions to
gain control over our own thoughts. It has two types of mechanisms: online maintenance of information and
its volitional or executive control. Classic models proposed persistent spiking for maintenance but have not
explicitly addressed executive control. We review recent theoretical and empirical studies that suggest up-
dates and additions to the classic model. Synaptic weight changes between sparse bursts of spiking
strengthen working memory maintenance. Executive control acts via interplay between network oscillations
in gamma (30–100 Hz) in superficial cortical layers (layers 2 and 3) and alpha and beta (10–30 Hz) in deep
cortical layers (layers 5 and 6). Deep-layer alpha and beta are associated with top-down information and
inhibition. It regulates the flow of bottom-up sensory information associated with superficial layer gamma.
We propose that interactions between different rhythms in distinct cortical layers underlie working memory
maintenance and its volitional control.

Introduction
Working memory is the ‘‘sketchpad of conscious thought.’’ It is
the platformwherewe hold andmanipulate thoughts and is foun-
dational to the organization of goal-directed behavior (Chatham
and Badre, 2015; Engle et al., 1999; Fuster, 1999; Goldman-
Rakic, 1995; Just and Carpenter, 1992; Miller and Cohen,
2001; Vogel and Machizawa, 2004).
Starting with work by Fuster, Goldman-Rakic, and others, a

wealth of data have shown that neurons in higher-order cortex,
including the prefrontal cortex (PFC), show ‘‘delay activity’’—
elevated levels of spiking during memory delays of working
memory tasks (Funahashi et al., 1989; Fuster and Alexander,
1971). For example, a stimulus is shown that must be remem-
bered over a brief (one second or more) delay. The stimulus
causes increased spiking. After it is gone, neurons continue to
spike, typically at a lower rate but still above baseline levels
(i.e., just before the stimulus). Everything we know suggests
delay activity spiking helps maintain the working memory of
the stimulus. We now also know that working memory involves
much of the cortex. It engages executive functions associated
with frontal cortex as well as posterior cortical areas that help
maintain specific content (Fuster, 2015; Lara and Wallis, 2015;
Miller and Cohen, 2001).
But how, exactly, does spiking do that? Under the ‘‘classic’’

model, delay activity reflects persistent spiking that keeps neural
ensembles ‘‘online’’ in a continual state of activation. However, it
is important to keep in mind that virtually all of the evidence for
persistent spiking is based on the time-honored practice of aver-
aging spiking over time and across trials. This was a necessity for
performing statistical analyses, especially if the data were
collected one neuron at a time (as it often was prior to the advent
of multi-electrode recording). But this averaging can make
spiking appear persistent, even though, in real time, e.g., on sin-
gle trials, it is sparse (Lundqvist et al., 2016, 2018a; Shafi
et al., 2007).

And there are issues with persistent spiking. Spikes are meta-
bolically expensive. Memories held by persistent spiking alone
can be labile because they are lost when activity is disrupted.
Multiple items can be simultaneously held if each item engages
non-overlapping ensembles (Almeida et al., 2015; Edin et al.,
2009). But neural ensembles often have a high degree of overlap
(Fusi et al., 2016; Rigotti et al., 2013; Warden and Miller, 2010).
Plus, neurons optimize information when they spike sparsely
and in bursts, not persistently (Lisman, 1997; Naud and Sprek-
eler, 2018). In other words, in the constant chatter of the brain,
a brief scream is heard better than a constant whisper. Sparse
spiking also allows multiple items to be multiplexed in time, pre-
venting them from interfering with one another and simplifying
the readout of working memory (different ensembles shout in
turn instead of mumbling on top of each other; Bahramisharif
et al., 2017; Lisman and Idiart, 1995; Lundqvist et al., 2011;
Sandberg et al., 2003; Siegel et al., 2009). In fact, even sustained
attention is not truly sustained. The brain samples the environ-
ment periodically (Buschman and Miller, 2010; Fiebelkorn
et al., 2018; Helfrich et al., 2018; Landau and Fries, 2012;
Schroeder et al., 2010; VanRullen, 2016). All this suggests that
working memory (and cognition in general) is more complex
than a simple persistence of spiking and average spike rates.
Further, a critical aspect of working memory has not enjoyed

as much experimental effort as its maintenance functions. Voli-
tional control is what makes working memory special. It is the
fundamental function by which our brain wrests control of
behavior from the environment and turns it to our own internal
goals (Goldman-Rakic, 1995). We can choose what to think
about and when and whether to act. Breakdown in volition is
associated with psychiatric disease, like schizophrenia (Uhlhaas
and Singer, 2010). Volition is, necessarily, a network phenome-
non and thus not well addressed at the single-neuron level.
Network properties can be examined with multiple-electrode re-
cordings of multiple neurons and at the level of local field
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potential (LFP) level, the summed activity of many neurons. Dur-
ing working memory tasks, there are LFP oscillations (i.e. syn-
chronized activity) in the alpha and beta band (10–30 Hz),
gamma band (30–100 Hz), and theta band (4–8 Hz; Bahramish-
arif et al., 2017; Bastos et al., 2018; van Ede et al., 2017; Honka-
nen et al., 2015; Howard et al., 2003; Lundqvist et al., 2016; Roux
et al., 2012; Salazar et al., 2012).

The gamma band has been associated with sensory informa-
tion held in working memory (Bastos et al., 2018; Honkanen
et al., 2015; Howard et al., 2003; Roux et al., 2012) as well as
spiking carrying sensory information (Lundqvist et al., 2016,
2018a). In fact, gamma power correlates with the number of ob-
jects held in working memory (Howard et al., 2003; Kornblith
et al., 2016; Roux et al., 2012). The alpha and beta band has
been associated with top-down information (e.g., task rules)
and with inhibitory functions (discussed below). It is anti-corre-
lated with gamma. The theta band may play a role in generating
irregular bursts of gamma and spiking (see below). As we will
see, the interaction between these rhythms and spiking has pro-
vided insight into top-down ‘‘executive’’ control that gates ac-
cess to working memory.

To be clear, we are not suggesting that the classic model of
persistent spiking is wrong. It is correct at a certain level of
approximation, averaged spiking of single neurons. But a new
look in more detail (e.g., on single trials) and on a network level
has provided new insights. The results still point to a central
role for spiking in working memory. It is just that the story is
more complex than previously suspected. Is not that always
the case?

Persistent Problems
We recently reviewed evidence for and against persistent spiking
underlying working memory (Lundqvist et al., 2018b), so we will
be brief here.

The evidence associating delay interval spiking with working
memory maintenance is clear and unequivocal (e.g., Funahashi
et al., 1989; Fuster, 1999; Fuster and Alexander, 1971; Gold-
man-Rakic, 1995; Miller et al., 1996; Pasternak and Greenlee,
2005; Romo et al., 1999). However, the evidence that spiking is
persistent is less so. Virtually all prior studies averaged spiking
over time, across trials, and often across neurons recorded in
different sessions. Averagingmasks the details of spiking activity
(Stokes and Spaak, 2016). Single-trial analyses indicate spiking
is typically sparse in real time (Kucewicz et al., 2017; Lundqvist
et al., 2016, 2018a; Shafi et al., 2007; Stokes and Spaak, 2016).

Yes, there are examples in the literature of single neurons that
seem to show persistent spiking on individual trial rasters. This
suggests that at least some neurons show persistent activity.
But the bulk of neurons spike sparsely in working memory de-
lays, even when spiking is averaged across trials (Cromer
et al., 2010; Fujisawa et al., 2008; Hussar and Pasternak, 2012;
Shafi et al., 2007). A model that only explains the properties of
a small percentage of the population is not complete. In addition,
those examples are almost all from single-neuron studies in
which investigators (necessarily) chose to only study neurons
that seemed to show a property of interest (like delay activity
spiking). That, plus single-neuron examples, are invariably
‘‘best of,’’ means that they are hardly representative of the

underlying population. Further, single-neuron studies typically
optimize stimulus parameters for the neuron under study, thus
optimizing neural activity. Under real-world conditions, however,
only a tiny fraction of neurons may be operating under such ideal
conditions. They are also not representative of the bulk of neu-
rons contributing to a given function. Parsimony suggests that
the whole population of neurons contribute to behavior, not
just a select few operating under ideal conditions.
We are not saying that there is anything wrong with the ap-

proaches described above. They were and are essential for
identifying constituent neural mechanisms (like delay activity).
However, whether spiking activity is persistent versus sparse is
a different level of question. It is one of how neural populations
and the circuits they form contribute. This requires an approach
in which neurons are sampled more randomly and in the context
of the activity of other neurons so that network properties can be
deduced. For this level of question, multiple-electrode studies
that record activity of dozens to hundreds of neurons are better
suited than single-neuron recording (Lundqvist et al., 2018b;
Miller and Wilson, 2008).
But if single neurons do not show persistence, is it possible

that it can be seen on the level of populations of neurons? This
possibility rests on the assumption that single neurons spike
asynchronously (i.e., at different times). When combined across
different neurons, spiking ‘‘fills’’ time, producing persistence at
the population level. To test this, one needs to measure activity
in local networks, not just single neurons. This can involve anal-
ysis of multiple simultaneously recorded neurons as well as
LFPs, which provide a measure of coordinated activity of neu-
rons within a few hundred micrometers. We recently applied
this approach to examine delay activity across seven frontal
cortical areas (dorsolateral PFC, ventrolateral PFC, frontal eye
fields [FEFs], dorsal premotor cortex, 8A, 8B, and the supple-
mentary motor area or anterior cingulate cortex). As expanded
below, this indicated that local populations of neurons are not
asynchronous. Instead, there are sparse and coordinated bursts
of spiking (Bastos et al., 2018; Lundqvist et al., 2016, 2018a).
Of course, onecouldposit that, if youcombine enoughneurons

across a wide enough expanse of cortex, one can fill time with
spikes. In other words, it could be that activity is persistent
when combined across highly distributed networks. However,
in order to evaluate extant models, the local network is critical.
Much of the brain’s computations take place on a local level.
The cortex is thought to be organized into local, recurrently con-
nected clusters with shared tuning properties (Constantinidis
et al., 2001;Kritzer andGoldman-Rakic, 1995), andpersistent ac-
tivity is typically modelled using local recurrent connectivity (Amit
and Brunel, 1997; Compte et al., 2000; Durstewitz et al., 2000).
Nonetheless, we can consider global cortical activity by using

techniques like electroencephalogram (EEG) and fMRI. This has
revealed that, for extended periods of time, information held in
working memory cannot be decoded from global activity. How-
ever, when the cortex is ‘‘pinged’’ by a task-irrelevant stimulus or
by transcranial magnetic stimulation, the network ‘‘rings’’ back
with the information held in working memory (Rose et al., 2016;
Sprague et al., 2016; Stokes et al., 2013; Wolff et al., 2017).
This suggests that the working memory can be held in the
absence of persistent spiking.
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Finally, most of the evidence that working memory involves
simply maintaining ensembles in a persistent active state comes
from relatively simple tasks in which a single item must be re-
tained over a ‘‘blank’’ delay interval (with no intervening distrac-
tions, further additions to working memory, etc.). That favors
evidence for persistence spiking by ‘‘protecting’’ it from events
that might disrupt it. When an interruption occurs, for example,
by having the animal focus briefly on another task, delay activity
can be disrupted for 100s of milliseconds without any loss of the
working memory items (Spaak et al., 2017; Watanabe and Funa-
hashi, 2014). It is possible, in principle, that working memory
items could be switched in and out of long-term memory to
bridge these gaps. But that would still require maintenance of
an index to the information in long-term memory.
Another related issue is the stability of the neural code under-

lying working memory. New sensory inputs can change the neu-
ral population code carrying working memories. This can be
evaluated by testing whether a decoder trained on activity at
one time in the trial can decode information at other times. If
not, then there has been a change in code. Even without inter-
vening inputs, the population code changes over the memory
delay (Meyers et al., 2008; Spaak et al., 2017; Stokes et al.,
2013). This argues against a model of working memory in which
an ensemble is activated by a sensory input and then kept in that
active state. Instead, working memory representations are dy-
namic and change over time. It is possible, however, to find a
linear combination of neurons that will maintain a stable code,
‘‘a stable subspace’’ (Murray et al., 2017). However, this has
been demonstrated with blank delays without additional inputs
or distractions. Decoders trained on time before additional in-
puts do not perform well following it (Parthasarathy et al., 2017).
Further, computational modeling of persistent activity using

attractor dynamics suggests its limitations. Attractor dynamics
are network dynamics dominated by neurons with persistent
spiking. Different attractor states correspond to unique patterns
of activity corresponding to different items in working memory.
As long as the state is maintained, the memories are held. The
problem is that attractor states are not stable when they are per-
turbed. They can be disrupted by a distracting input or by adding
additional information to working memory. For this same reason,
they have difficulty storing more than one working memory at a
time. Bump attractor models, originally proposed for visuospa-
tial working memory, can store multiple locations if there is no
overlap in their neural representations, that is, if the working
memories are held by essentially different networks (Almeida
et al., 2015; Edin et al., 2009). But if there is overlap, the attractor
states for different working memories tend to meld into one. This
is problematic for the overlapping representations seen in the
PFC (the cortical area most associated with working memory),
at least for non-spatial information (Rigotti et al., 2013; Warden
andMiller, 2010). Any universal model of working memory needs
to deal with overlapping representations. Otherwise, it is only a
special-case model.

What Is the Alternative?
An alternative is a hybrid attractor-dynamic and synaptic model.
Rather than persistent spiking, there are brief, sparse, bursts
of spiking. Working memories are held between spiking by

spiking-induced changes in synaptic weights, ‘‘impressions’’
left in the network (Lundqvist et al., 2011, 2012; Mongillo et al.,
2008; Sandberg et al., 2003; Stokes, 2015). Wang, Goldman-
Rakic, and colleagues showed that spiking in the PFC can
produce fast synaptic enhancement that lasts hundreds of milli-
seconds (Wang et al., 2006). In fact, the enhancement depends
on sparse, bursty spiking. Not only is this metabolically less
expensive, it also mitigates many of the problems of persistent
attractor states. Synaptic weights are less prone to interference.
Because the time spent in active attractor states is kept to amin-
imum, the working memories are less prone to disruption from,
e.g., a new sensory input. Multiple items can be simultaneously
held by multiplexing in time their brief bouts of activity. In other
words, by having different ensembles active at different times,
the attractor states do not interfere with each other (e.g., Siegel
et al., 2009).
For example, in the synaptic attractor model (SAM), ensem-

bles have inhibitory connections with other ensembles (Lundqv-
ist et al., 2011), a feature shared by classic models of working
memory (Amit and Brunel, 1997; Goldman-Rakic, 1996). Each
attractor state has a limited lifetime. Thus, they are semi-stable
and shut others down temporarily. The result is that each work-
ing memory item is expressed in brief bouts of spiking. Based on
known biophysics, the SAM predicts that, in absence of bottom-
up sensory inputs, networks oscillate in the alpha and beta band
(10–30 Hz), only occasionally spiking. When a bottom-up sen-
sory input activates an ensemble, it temporarily oscillates in a
gamma state (>30 Hz) and gives off a short burst of elevated
spiking before inhibition reverts it back to the alpha and beta
state and reduced spiking. The gamma bursts may be linked
to underlying theta rhythms (Canolty et al., 2006; Voytek et al.,
2015; Watrous et al., 2015). This could organize time-multiplex-
ing of items (Bahramisharif et al., 2017; Fuentemilla et al., 2010;
Herman et al., 2013).
The spiking induces temporary (<1 s) changes in synaptic

weights, perhaps via calcium dynamics (Lundqvist et al., 2011,
2016; Mongillo et al., 2008; Wang et al., 2006). Therefore, both
spiking and short-term plasticity are thought to be mechanisms
for workingmemory storage. Brief, irregular bursts of spiking and
gamma during the memory delay are needed to occasionally
refresh the synaptic weight changes so that the working mem-
ories can be maintained beyond the lifetime of the synaptic
weight changes.
In the model, the refresh rate is responsible for the limited ca-

pacity of working memory (an average of four items; Awh et al.,
2007; Buschman et al., 2011; Cowan, 2010; Luck and Vogel,
1997). If too many items are simultaneously held, the require-
ment to refresh the synapses causes a buildup of interference
due to competition for the limited time available for the refresh
(Lundqvist et al., 2011; Mi et al., 2017). For this reason, the
gamma burst rate increases with working memory load (Lundqv-
ist et al., 2016). Schizophrenic patients have lowered working
memory capacity and do not demonstrate the load-dependent
changes in gamma (Basar-Eroglu et al., 2007) observed in
healthy subjects (Howard et al., 2003; Roux et al., 2012).
We tested this model by analyzing LFP and spiking from seven

cortical areas (dorsolateral and ventrolateral PFC, the frontal
eye fields, dorsal premotor cortex, areas 8A and 8B, and the
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supplementary motor area or anterior cingulate cortex) of mon-
keys performing several different working memory tasks (Bastos
et al., 2018; Lundqvist et al., 2016, 2018a). These tasks involved
both spatial and non-spatial workingmemory and different work-
ing memory loads (1–3). Across all these different tasks and
areas, spiking that carried information about the sensory inputs
to be held in working memory was highly associated with brief
bursts of narrow-band gamma oscillations, especially during
the encoding of sensory information into working memory (Fig-
ures 1A–1C; Lundqvist et al., 2016). During such gamma bursts,
spiking was elevated andmore informative about the contents of
working memory than spiking outside the bursts (Lundqvist
et al., 2018a). In fact, at recording sites where spiking did not
carry working memory information, there was little or no gamma
bursting (Figure 1D). Interleaved with the gamma bursts were
brief bursts of beta and bursts that were not associated with
spiking carrying working memory contents. During the memory
delays, the gamma bursts occurred at a lower rate but still above
the baseline rate (Bastos et al., 2018; Lundqvist et al., 2016,
2018a). This is consistent with the model prediction that gamma
bursts and spikes are needed to refresh synaptic weight
changes. The gamma bursting and associated spiking increased
near the end of the delay, around the time working memories
needed to be ‘‘read out’’ (Figure 1C).

Importantly, gamma bursts and alpha and beta bursts were
anti-correlated, like mirror images of each other (Figure 1C).
This was task related, only appearing at recording sites where
spiking reflected the contents of workingmemory (Bahramisharif
et al., 2017; Lundqvist et al., 2016, 2018a). The task-related anti-
correlation between gamma bursts and alpha and beta bursts
intrigued us. It occurred to us that it could be a mechanism for
controlling working memory storage. Gamma is associated
with the spiking that holds sensory inputs in working memory.
If it has a push-pull relationship with alpha and beta, then gamma
(and henceworkingmemory storage) can be turned on and off by
lowering and raising alpha and beta, respectively. For example,
turning down alpha and beta would allow gamma to be ex-
pressed and sensory inputs to be encoded in working memory.

Turning up alpha and beta would turn down gamma and thus
clear out the working memory storage.

What about Alpha and Beta?
The above implies that alpha and beta have an inhibitory role in
working memory. In visual cortex, inhibition has been linked
with alpha (8–12 Hz; Haegens et al., 2011; Jensen andMazaheri,
2010). In prefrontal and motor cortex, inhibition is more often
linked with beta (15–30 Hz). However, several studies report
power modulation that spans both the alpha and beta bands
(Bastos et al., 2018; van Ede et al., 2011). Thus, we will group
these bands together as they seem to have similar functions:
providing inhibition. One exception is in parietal cortex, where
lower beta has been associated with working memory mainte-
nance (Kopell et al., 2011; Salazar et al., 2012).
Motor planning has similarities to workingmemory control and

may have shared evolutionary origins (Chatham and Badre,
2015). In fact, motor beta and gamma have very similar behav-
ioral correlates as working memory beta and gamma. Beta is
elevated when a movement is being withheld (Donoghue et al.,
1998; Feingold et al., 2015; Jha et al., 2015; Zhang et al.,
2008). During movement, beta wanes and gamma waxes. Beta
is then elevated after movement (Feingold et al., 2015) as if the
motor plan was being cleared out. Similarly, there was increased
beta in the PFC after the end of a trial, once working memories
are no longer relevant (Lundqvist et al., 2018a). In fact, this effect
was selective to recording sites where workingmemory informa-
tion was held during the trial. Alpha/beta may also play a role in
protecting working memory from distractors (Bonnefond and
Jensen, 2012). Across virtually all of sensory cortex, gamma is
associated with sensory processing and beta is anti-correlated
with gamma (Bauer et al., 2006; David et al., 2015; van Ede
et al., 2011; Fisch et al., 2009; Fontolan et al., 2014; Zhang
et al., 2008).
Inhibition is central to executive control and so is the knowl-

edge about what needs to be controlled (Miller and Cohen,
2001). Correspondingly, beta has also been associated with
the top-down information. Task rules are reflected in different

Figure 1. Gamma and Beta Bursts Underlie
Working Memory
(A) A single-trial example of LFP power in time and
frequency. Two stimuli were presented (S1 and S2)
and later tested following a delay. Narrow bursts of
power in the beta and gamma bands are evident
both during cue processing and delay.
(B–D) LFP data from sites that contained spikes
that carried information about the presented cue
(B) versus those that did not (D) are shown. Only
sites containing informative spiking (D; population
average) showed modulation of beta and gamma.
This effect remained after controlling for differ-
ences in spike rate between informative (B) versus
non-informative (C) sites.
(C) On gamma-modulated sites, the beta and
gamma burst rates are mirror images of each
other. Gamma bursting increases during stimulus
presentation and towards the end of the delay, and
beta does the opposite.
(D) On sites without informative spiking, only beta
is task modulated and less so.
Modified from Lundqvist et al. (2016).
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patterns of beta synchrony in PFC (Buschman et al., 2012) and
visual cortex (Richter et al., 2018) as if beta was helping form en-
sembles for the rules. Such content-specific ‘‘beta ensembles’’
have also been found for other types of top-down information,
like learned categories (Antzoulatos and Miller, 2016; Stanley
et al., 2018; Wutz et al., 2018). Thus, with the spatiotemporal
pattern of beta changing with top-down information, beta’s
inhibitory effects can act selectively and direct the flow of sen-
sory information.
Support for this comes from numerous studies showing that

attention to sensory inputs results in increased gamma and
increased alpha and beta occurs for modalities or locations
that are unattended (Buffalo et al., 2011; Fries et al., 2001; Hae-
gens et al., 2011; Jensen and Mazaheri, 2010; van Ede et al.,
2017; Leszczynski et al., 2017; Popov et al., 2017; Wolff et al.,
2017). A magnetoencephalography (MEG) study in humans
also showed that the alpha and beta in sensory cortex were
anti-correlated with the locus of attention (and with gamma)
and were under top-down control from frontal cortex (Popov
et al., 2017). The alpha and beta were also anti-correlated with
behavioral reaction time, indicating its functional relevance.
Thus, we propose dual roles for beta: inhibition and formation

of ensembles for top-down information. We hypothesize that the
inhibitory role for beta is a mechanism acts locally, at the level of
cortical columns (Bastos et al., 2018). This local inhibition is akin
to the role proposed for alpha in sensory cortex (Jensen and
Mazaheri, 2010). In addition, beta rhythms have been proposed
to be ideally suited for flexibly generating neural ensembles (Ko-
pell et al., 2011; Spitzer and Haegens, 2017), with the beta
rhythmic networks reaching down to the level of individual cells
(Dann et al., 2016). These large-scale neural ensembles, we
propose, contain the top-down knowledge required to locally
deliver inhibition, and thus executive control, where and when
it is needed.
In correspondence with their roles in top-down versus bottom-

up functions, beta and gamma have also been associated with
feedback and feedforward cortical processing. In a study using
large-scale electrocorticography, Bastos et al. (2015a) recorded
from eight different visual areas simultaneously as monkeys per-
formed a visual attention task. A corticocortical motif emerged
by analyzing all pairs of areas in relation to their anatomical
pattern of feedforward and feedback connectivity. Gamma oscil-
lations were shown to flow up the visual cortical hierarchy in a
bottom-up direction. Beta oscillations flowed down the hierarchy
in the top-down direction. A similar functional hierarchy was then
subsequently discovered in the human visual system with MEG
recordings (Michalareas et al., 2016). Causal evidence also sup-
ports these findings. Electrical micro-stimulation in V1 causes
increases in gamma power in V4, an area downstream from V1
and in receipt of feedforward connections. Micro-stimulation
in V4 causes increases in alpha power in V1 (van Kerkoerle
et al., 2014).
Note that bottom-up gamma is not inconsistent with the idea

that top-down attention often enhances gamma power and in-
ter-area synchrony (Bastos et al., 2015a; Bosman et al., 2012;
Buschman and Miller, 2007; Fries et al., 2001; Gregoriou et al.,
2009). Top-down attention is often conceptualized as a ‘‘spot-
light’’ that turns up the gain on behaviorally relevant sensory rep-

resentations (Desimone and Duncan, 1995). Thus, sensory
enhancement of attended items also enhances gamma. At the
same time, gamma enhancement can be controlled by beta
rhythms (Lee et al., 2013). Richter and colleagues examined
the trial-by-trial pattern of top-down Granger causality from pa-
rietal to visual cortex in beta with the bottom-up Granger causal-
ity from V1 to V4 in gamma (Richter et al., 2017). The strength of
top-down (parietal to visual cortex) beta synchrony predicted the
strength of bottom-up (V1–V4) gamma synchrony.
Plugging this into what we suggested above, the idea is that

top-down information carried by alpha and beta rhythms could
inhibit the expression of bottom-up information carried by
gamma rhythms and perhaps even regulate the precise patterns
of gamma synchrony that enable corticocortical communication
(Fries, 2015). But how do these rhythms interact on a micro-cir-
cuit level? The answer seemed to lie in interactions between
cortical layers.

Beta in Deep-Layer Cortex Interacts with Gamma in
Superficial-Layer Cortex
The cerebral cortex has laminar organization. Layer 4 is the input
layer (Felleman and Van Essen, 1991; Gilbert and Wiesel, 1983;
Rockland and Pandya, 1979). Although the correspondence is
not perfect (biology never is), the superficial layers (layers 2
and 3) largely contain the feedforward-projecting neurons that
carry sensory information anteriorly and the deep layers (layers 5
and 6) contain the feedback-projecting neurons that carry the
top-down information posteriorly in cortex (Markov et al.,
2014). Gamma and beta rhythms are emphasized in different
cortical layers. In visual cortex, gamma is more prominent in su-
perficial and middle layers and alpha and beta are more promi-
nent in deep layers (Bollimunta et al., 2008; Buffalo et al., 2011;
Maier et al., 2010; Smith et al., 2013; Xing et al., 2012).
To determine whether this was also true in frontal cortical

areas associated with working memory, we recorded with
‘‘laminar’’ electrodes in animals performing three different work-
ing memory tasks (Bastos et al., 2018). Laminar electrodes have
multiple contacts along the shaft and thus allow recording from
all cortical layers simultaneously.
Frontal cortex gamma power and cue-related information

peaked in superficial layers and alpha and beta peaked in
deep layers (Figure 2A). Working memory delay interval spiking
was also stronger in superficial layers (Figure 2B). This corre-
sponds with our observations about gamma and beta rhythms.
The superficial layers are the feedforward layers that carry bot-
tom-up sensory inputs up the cortical hierarchy. Thus, it is where
we would expect to find more bottom-up gamma and spiking
carrying sensory information held in working memory. In sensory
areas, bottom-up gamma and informative spiking is typically
only elevated for the duration of sensory stimulation (Buffalo
et al., 2011; Fries et al., 2001). In prefrontal cortex, bursts of
spiking and gamma also appear over the delay interval. This
could be the result of longer time synaptic integration constants
(Murray et al., 2014) brought about by superficial-layer lateral
excitatory connections (Goldman-Rakic, 1996) and more synap-
tic spines on pyramidal cells (Elston, 2000). Likewise, it makes
sense that beta would be stronger in deep layers. Beta is asso-
ciated with top-down information. The deep layers are the
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feedback layers that can carry top-down information from frontal
cortex down the cortical hierarchy.

The pattern of influence between beta and gamma suggested
a laminar-rhythmic infrastructure for control of working memory

storage. Granger causality is a statistical measure of time series
prediction that is indicative of functional connectivity (Bressler
and Seth, 2011). It indicated that deep-layer beta oscillations
regulated superficial-layer beta. The phase of deep-layer beta
oscillations, in turn, modulated the amplitude of superficial
gamma (Bastos et al., 2018; Canolty et al., 2006; Colgin et al.,
2009; Lakatos et al., 2005; Spaak et al., 2012). Importantly, the
power of deep-layer beta was inversely correlated with superfi-
cial-layer gamma, consistent with an inhibitory role for beta
(Figure 2C). Thus, coupling between deep and superficial layers
may serve a control function. Increasing deep-layer alpha and
beta would increase superficial layer beta. Superficial layer
beta would, in turn, suppress gamma and thus the expression
of bottom-up sensory information in superficial layers. This
would prevent the encoding of sensory information in working
memory. Conversely, if deep-layer beta is reduced, there would
be decreased coupling to superficial-layer beta. That would
release gamma from inhibition, allowing its expression and the
encoding of bottom-up information into working memory.
Indeed, we found that the strength of deep-layer beta coupling
to superficial-layer gamma was reduced during the working
memory delays compared to the pre-cue baseline period (Bas-
tos et al., 2018).

Mechanisms of Gamma/Beta Interplay
To understand how the interplay between gamma and beta gives
rise to working memory control, it is important to consider their
neurophysiological origins. Here, we provide a short summary
(for detailed reviews, see Buzsáki and Wang, 2012; Fries,
2015; Wang, 2010).
Excitatory (E) and inhibitory (I) cells are densely interconnected

in cortex. Fast (greater than 10 Hz) rhythms can be generated in
cortex through recurrent inhibition between E cells and a variety
of classes of I cells. Fast-spiking (FS) I cells are a key player. They
provide the feedback inhibition necessary to shut down activity
and create an oscillation. Once the inhibition wears off it creates
a window for the E cells to fire. The inhibitory time constants
determine the spacing of these timewindows and thus the rhyth-
mic frequency. Other relevant factors that determine the length
of the oscillatory cycle are the input strength to the network,
the pattern of connectivity between the E and I cells, and the
leak currents (Brunel and Wang, 2003). This mechanism has
been termed ‘‘PING,’’ pyramidal interneuron network gamma,
because it was originally conceived as a mechanism for gamma
(Amit and Brunel, 1997; Brunel and Wang, 2003; Whittington
et al., 2000). However, it can also generate beta-rhythmic en-
sembles (Lee et al., 2013; Lundqvist et al., 2011). We should
note that our hypotheses about the role of beta in working mem-
ory do not depend on how beta is generated.We offer this as one
possible mechanism; there are other models for beta generation
(Sherman et al., 2016).
There could be two separate PING mechanisms in the super-

ficial and in deep layers: stronger gamma in superficial and
stronger beta in deep layers resulting from different classes
of I cells in superficial versus deep layers with different time
constants and/or the greater number of FS cells in superficial
layers. The observed push-pull interaction between superficial
gamma and deep beta could be generated by reciprocal
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Figure 2. Laminar Organization of Gamma/Beta Rhythms and Delay
Activity
(A) Gamma power and alpha and beta power are segregated into distinct
layers. Gamma power peaks 400 mm above layer 4, whereas alpha and beta
power peaks at 600 mm below layer 4. Gamma bursts in superficial, but not
deep, layers carry significant information about the cued item during the
working memory delay period (quantified by the percent explained variance
[PEV] statistic). Beta bursts do not carry significant information during the
delay (not shown). Dotted lines are ±1 SEM across sessions (N = 60).
(B) Spiking activity, quantified by multiunit change from baseline (a.u.) during
the delay period, is strongest in superficial layers. The pattern of laminar
pattern of delay activity correlates strongly with gamma and is strongly anti-
correlated with alpha and beta.
(C) Correlation map between gamma and beta power across layers. Deep-
layer beta power is anti-correlated with superficial layer gamma power during
the working memory delay.
From Bastos et al. (2018).
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inhibitory connections between the two PING networks (Lee
et al., 2013).
The PING mechanism relies on strong excitation. For the

gamma band, this drive is the sensory stimulation itself. In visual
cortex, this generates strong, oscillatory gamma in response to
sensory input, which ceases when the stimulus is removed (Bas-
tos et al., 2015a; Bosman et al., 2012; Brunet et al., 2015; Fries
et al., 2008). In the PFC, gamma is more bursty and variable,
e.g., the center frequency varies and the bursts are sparse
(Lundqvist et al., 2016). This may be because the PFC integrates
inputs from many cortical and subcortical areas. Thus, external
sensory drive will have less of an impact on its overall excitation.
Also, likely due to an enhanced number of excitatory connec-
tions on PFC cells (Elston, 2000), more lateral excitatory connec-
tivity (Goldman-Rakic, 1996), longer intrinsic time constants
(Murray et al., 2014), and synaptic mechanisms (Wang et al.,
2006), PFC networks are able to produce (bursty) gamma even
in the absence of sensory stimuli.
The relationship between sensory input and rhythms is oppo-

site for beta. Beta is more prominent in the absence of sensory
drive (and, in somatomotor cortex, the absence of motor move-
ment). Deep-layer beta may be generated by a PINGmechanism
with excitatory drive provided via thalamocortical (Ketz et al.,
2015) and/or basal ganglia (Chatham and Badre, 2015) loops
that are self-sustaining in the absence of external inputs. Thus,
beta is strong in the absence of sensory inputs, during planning,
task set preparation, etc. Competition between the beta and
gamma assemblies could control the ‘‘tuning’’ of the network
to either internal (in beta) or external (in gamma) information
(Brincat and Miller, 2016; Buschman and Miller, 2007).

Interplay between Gamma and Beta during Working
Memory Control
To test whether this interplay between beta and gamma
correlates with the control of working memory, we used a
sequence-matching task (Lundqvist et al., 2018a). Animals
held sequences of two objects in working memory and then
had to judge whether a subsequent test sequence was a match.
The advantage to this task is that it has multiple decision points.
Animals have to determine whether each object is a match both
in identity and order. This affords more opportunity to examine
working memory control than a typically working memory task,
which only involves remembering one stimulus and making
one decision that co-occurs with a motor action.
This analysis revealed that shifts in the balance between beta

and gamma and spiking did, in fact, correlate with workingmem-
ory control (Lundqvist et al., 2018a). In anticipation of having to
use a given object for the match decision (e.g., the first sample
object for judging the first test object or the second for the sec-
ond), there was reduced beta bursting along with an increase in
gamma bursting and spiking information about the specific
anticipated object. When an object held in working memory
was no longer needed, beta increased and gamma decreased
together with spiking conveying information about that object.
Further, deviations from ‘‘correct’’ beta and gamma dynamics
predicted not only a forthcoming error but what kind of error
the animal would make. For example, if the animal was going
to mistakenly respond ‘‘match’’ to a non-matching sequence,

the temporal dynamics of and balance between gamma and
beta bursting looked like that on a match trial instead of non-
match trial. We could also tell whether the animals made the
wrong decision to the first or second test object. In short, shifts
in the balance between beta and gamma correlated with working
memory control processes; errors in the balance predicted up-
coming behavioral errors.

Cortical Gradients
So far, our discussion has emphasized the PFC. Delay activity
spiking, however, is a widespread cortical phenomenon (Fuster,
2015). But how widespread has recently generated vigorous
debate (Christophel et al., 2017; Leavitt et al., 2017). For
example, Dotson and Gray recorded spiking activity from 42
cortical areas (Dotson et al., 2018). Delay activity was wide-
spread but also showed gradients. In V1, delay activity was
mostly decreased spiking in the delay relative to baseline, sug-
gesting synaptic adaptation. This could also be a consequence
of top-down signaling from higher cortical areas (van Kerkoerle
et al., 2017). Other studies in early sensory areas also showed
weak or non-existent delay activity spiking compared to
higher-order cortical areas (Haller et al., 2018; Leavitt et al.,
2017; Mendoza-Halliday et al., 2014). Interestingly, at the other
extreme of cortical processing, in motor cortex, there is also little
delay activity (Dotson et al., 2018; Haller et al., 2018). In between,
there is higher-order association cortex (including PFC, posterior
parietal cortex, and temporal cortex) rich in delay activity (Dotson
et al., 2018; Fuster, 1990; Haller et al., 2018; Leavitt et al., 2017;
Sigala, 2009; Woloszyn and Sheinberg, 2009). These areas are
highly interconnected (Markov et al., 2013). They are also the
cortical areas where top-down and bottom-up information
reaches apex (Brincat et al., 2018; Siegel et al., 2015) and
thus could support domain-general cognitive operations (Haller
et al., 2018).
These higher order, delay-activity-rich areas share several as-

pects of laminar circuitry. They have a balance in the soma size
and corticocortical output connectivity between superficial
versus deep layers (Goulas et al., 2018). In contrast, motor
output structures have a large laminar asymmetry in soma size
(larger deep layer neurons) and predominant layer of cortical
output (deep layers). Low-level sensory cortex features a highly
differentiated and dense laminar circuit, emphasizing superficial
layer soma size, and most corticocortical outputs originate from
superficial layers.
We hypothesize that low-level sensory andmotor cortex is not

ideal for working memory representation and control as a result
of their local circuitry. Sensory areas have a relative emphasis on
the superficial layers (Zaldivar et al., 2018), where inputs can be
richly encoded with gamma but lack the control element from
deep layers. Motor areas emphasize deep layers (along with a
predominance of beta), where outputs to motor structures can
be gated but have a relatively poor superficial layer circuitry
(Goulas et al., 2018). Association cortices lie in between. They
have a relative balance between superficial and deep circuitry
(Goulas et al., 2018) better suited for both representation and
control of activity. In addition, there are other neuroanatomical
gradients that also change from early to higher-order cortex,
such as spine density and lateral connectivity (Elston, 2000;
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Goldman-Rakic, 1996). Both increase up the hierarchy, making
cells more intrinsically excitable and integrative (Murray et al.,
2014; Wasmuht et al., 2018). The relative balance between spe-
cific inhibitory cell populations also changes (Kim et al., 2017)
and could impact circuits for working memory (Wang and
Yang, 2018). It will be interesting to explore, in further work,
which exact circuit elements enable higher-order cortex to sus-
tain working memory.

Putting It All Together: A Model for Volitional Control of
Working Memory
Figure 3 illustrates our model. It shares many aspects with previ-
ously proposed circuits for visual sensory function (Bastos et al.,
2015b; Mejias et al., 2016). Spikes encode and help maintain
information in workingmemory. Top-down information is associ-
ated with beta in deep (feedback) cortical layers (red wave). Bot-
tom-up information is associated with gamma in superficial
(feedforward) layers (blue waves). The central idea is that (top-
down) deep-layer beta regulates the expression of (bottom-up)
gamma in superficial layers, thus gating the access of sensory in-
formation to working memory and controlling its maintenance.
Alpha/beta and gamma oscillations can be below the threshold
for spiking, but they drive membrane potentials toward and
sometimes over spike thresholds, which is why there tends to
be more spiking on the depolarizing phases of oscillations (Sie-
gel et al., 2009).

Both superficial and deep layers of cortex are comprised of
networks of deeply interconnected excitatory pyramidal (black)
neurons and inhibitory (red) interneurons. Deep-layer beta is uni-
directionally coupled to superficial layer beta. In turn, superficial-
layer beta suppresses superficial-layer gamma oscillations. Note
that the middle and deep layers of PFC are reciprocally con-
nectedwith themediodorsal nucleus of the thalamus,with layer 4
receiving thalamic input and layers 5 and 6 sending output to the
thalamus (Giguere and Goldman-Rakic, 1988). Working memory
delay interval spiking is prominent in the medial dorsal (MD) thal-
amus (Watanabe and Funahashi, 2004). Beta-band coherence
has been reported between PFC and thalamus during working
memory maintenance (Parnaudeau et al., 2013). Optogenetics
suppression of MD thalamus suppresses cortical delay activity
(Schmitt et al., 2017). Thus, the modulatory role of beta in the
deep layers for working memory control might be in part regu-
lated by the thalamocortical loop.
To encode information in working memory, deep-layer beta

power and/or its coupling to superficial-layer beta weakens.
This disinhibits the recurrent excitation of layer 2 and layer 3 neu-
rons (as indicated by the loop arrow) generating bursts of
gamma. The gamma allows expression of spiking carrying bot-
tom-up sensory inputs. The balance between beta and gamma
can regulate the level of gamma bursting in the memory delay
needed to occasionally refresh the synaptic weight changes
that help maintain the working memories. During working mem-
ory readout, beta is once again relaxed, allowing the increased
gamma bursting and the ramp-up of spiking often seen near
the end of memory delays (Hussar and Pasternak, 2010; Roesch
and Olson, 2005). Increased spiking is needed so that working
meories can acquire control of behavior. Keeping gamma
bursting and spiking at a lower level earlier in the delay interval
may prevent working memories from prematurely acquiring
that control. To clear out working memory, beta power and
coupling increases. This suppresses gamma and the spiking
that was maintaining the working memory.

Summary and (Many) Open Questions
Recent studies continue to indicate that memory delay spiking
plays a critical mechanism for maintaining information in work-
ing memory. But they also indicate that there is more going on
than a simple persistence of spiking. Instead, there are brief
bursts of spiking and associated gamma bursting that reflect
activation and reactivation of the attractor states of the neural
ensembles for the working memory memoranda. The spiking
could cause temporary changes in synaptic weights that carry
the working memories between spiking. This combination of
spiking and synaptic weight changes solves many of the prob-
lems with persistent spiking. It is metabolically less expensive
and makes the memories more robust to interference. It allows
multiple items to be held in working memory by ‘‘juggling’’ their
activations in time. This new perspective is part of mounting ev-
idence that the neural basis of cognition is not continuous
(Buschman and Miller, 2010; Fiebelkorn et al., 2018; Helfrich
et al., 2018; Landau and Fries, 2012; Schroeder et al., 2010;
VanRullen, 2016).
Sparse spiking also leaves room for rhythmic interplay be-

tween oscillations of different bands: gamma, alpha, and beta.

Su
pe

rf
ic

ia
l

De
ep

Excitatory cells
Inhibitory cells

Gamma
Alpha/Beta

Figure 3. A Model of Working Memory
Denoted by two rectangular, dashed boxes, two cortical compartments, su-
perficial and deep, are made up of densely interconnected excitatory pyra-
midal (black) and inhibitory (red) interneurons. Inhibitory connections are line
segments with a red, rounded end, and excitatory connections are line seg-
ments with a black, arrow end. Two separate PING networks in superficial
versus deep layers are responsible for generating gamma in superficial layers
and beta in deep layers (sustained by connections to thalamus and basal
ganglia; not shown). The looping arrow returning on itself in the superficial
layers represents the recurrent connectivity found within layer 3 pyramidal cell
networks in prefrontal cortex. The sinusoidal red line in deep layers reflects
beta oscillations and their driving influence on superficial beta oscillations.
Beta oscillations are phase amplitude coupled with gamma oscillations (blue
squiggly lines), and these gamma oscillations organize delay-period spiking,
representing working memory content (straight black marks). Spiking activity
inside gamma bursts is more informative than outside. Over time, moving from
left to right in the figure, the deep beta reduces in power and releases inhibition
onto the superficial layers. This results in enhanced superficial gamma and
spiking, i.e., enhanced maintenance of working memory, as is seen when
transitioning between baseline to working memory task performance. The
reversed process (enhancement of deep layer beta and enhanced suppres-
sion of superficial layer gamma and spiking) would ‘‘clear out’’ the contents of
working memory, as seen at the end of the trial, or when working memory
contents are no longer needed.
From Bastos et al. (2018).

470 Neuron 100, October 24, 2018

Neuron

Perspective



Beta is associated with top-down information and seems to have
an inhibitory role. Increasing beta decreases gamma and spiking
and vice versa. Thus, the push-pull relationship (when beta is up,
gamma is down and vice versa) may be the infrastructure for top-
down, executive control of working memory storage. In short,
beta can turn on and off the ‘‘faucet’’ of gamma-related working
memory reactivations.
Our discussion has been focused on working memory and the

higher cortical areas associated with working memory. But we
have noted that there is a similar laminar distribution of gamma
and beta as well as a similar push-pull relationship between
them all over sensory andmotor cortex. Thus, rather than playing
a role in working memory only, this laminar interplay may be a
cortical motif, a general mechanism by which the cortex, writ
large, can control the inflow and processing of bottom-up sen-
sory inputs via top-down knowledge (Bastos et al., 2012). This
indeed fits with reports of widely distributed delay activity (Dot-
son et al., 2018; Fuster, 2015) and the idea that PFC could
have more of a control function (Lara and Wallis, 2015; Miller
and Cohen, 2001).
To be sure, this is just a beginning. Thus far, we have focused

on the relatively simple processes of gating access to, and
clearing out of, working memory. But working memory control
is more than encoding and clearing information. It also involves
manipulation. Information in working memory can be trans-
formed, reordered, and sequenced, etc. This requires control
at the level of individual ensembles, not just a general gating
mechanism. Long-term memories can be loaded into working
memory; we do not yet know whether the same rhythmic inter-
play underlies this. What we are proposing is the infrastructure
by which volition acts. There is also, of course, the big question
of the genesis of volition itself. Our model, as with any other
(including the classic model of working memory storage), is
just a starting point for more hypothesizing, further testing,
and, if it is merited, updating.
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